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Abstract

Many researchers have noted that scientific codes perform poorly on computer architectures
involving a memory hierarchy (cache).  Furthermore, a number of people and some vendors
concluded that simply making the caches larger would not solve this problem.  Instead of using
large caches, some vendors of high performance computing systems have opted to equip their
systems with fast memory interfaces, but with a limited amount of on-chip cache and no off-chip
cache (e.g., the Cray T3D, Cray T3E, and the IBM SP with the POWER 2 Super Chip).

Some RISC-based high performance systems supported some sort of prefetching or
streaming facility that allows one to more efficiently stream data between main memory and the
processor (e.g., the Intel Paragon, Cray T3E, IBM SP POWER 2 and P2SC, SGI Origin 2000, etc.).
However, there are fundamental limitations on the benefits of these approaches, which makes it
difficult to see how these approaches by themselves will solve all of the problems associated with
the “Memory Wall.”  In fact, it has been shown that if one relies solely on this approach for the
Cray T3E, one is unlikely to achieve much better than 4–6% of the machine’s peak performance.

Does this mean that as the speed of RISC/ CISC processors increases, systems designed to
process scientific data are doomed to hit the Memory Wall?  The answer to that question depends
on the ability of programmers to find innovative ways to take advantage of caches.  This paper
discusses some of the techniques that can be used to overcome this hurdle.  Once these techniques
have been identified, one can then consider what types of hardware resources are required to
support these techniques.*†

                                                
* This work was made possible by the grant of computer time by the DOD  HPCM Program.  Additionally, it is largely

based on work that was funded as part of the CHSSI administered by the DOD HPCM Program.
† All items in bold type are defined in the glossary.



1.  Introduction

Many researchers have noted that scientific codes perform poorly on computer architectures
involving a memory hierarchy (cache) (Bailey 1993).  Furthermore, as a result of simulation
studies, running microbenchmarks on real machines, and running real codes on real machines, a
number of people and some vendors concluded that simply making the caches larger would not
solve this problem.  As a result of these conclusions, some vendors of high performance computing
systems have opted to equip their systems with fast memory interfaces, but with a limited amount
of on-chip cache and no off-chip cache (e.g., the Cray T3D, Cray T3E, and the IBM SP with the
POWER 2 Super Chip).

Some RISC-based high performance systems supported some sort of prefetching or
streaming facility that allows one to more efficiently stream data between main memory and the
processor (e.g., the Intel Paragon, Cray T3E, IBM SP POWER 2 and P2SC, SGI Origin 2000, etc.).
However, there are fundamental limitations on the benefits of these approaches which make it
difficult to see how these approaches by themselves will solve all of the problems associated with
the “Memory Wall.”  In fact, it has been shown that if one relies solely on this approach for the
Cray T3E, one is unlikely to achieve much better than 4–6% of the machine’s peak performance
(O’Neal and Urbanic 1997).

Does this mean that as the speed of RISC/CISC processors increases, systems designed to
process scientific data are doomed to hit the Memory Wall?  The answer to that question depends
on the ability of programmers to find innovative ways to take advantage of caches.  This paper
discusses some of the techniques that can be used to overcome this hurdle.  Once these techniques
have been identified, one can then consider what types of hardware resources are required to
support them.

It is important to note that this work is based on two key concepts:

(1) It is acceptable to make significant modifications to the programs at the implementation
level.

(2) Not all computer architectures are created equal.  Therefore, one will frequently have to
define a minimum set of resources that the tuning will be aimed at (e.g., cache size).

2.  Caches and High Performance Computing

Many researchers have noted that scientific codes perform poorly on computer architectures
involving a memory hierarchy (cache) (Bailey 1993).  Furthermore, as a result of simulation studies
(Kessler 1991), running microbenchmarks on real machines (Mucci and London 1998), and
running real codes on real machines, a number of people and some vendors concluded that simply
making the caches larger would not solve this problem.  In fact, one group of researchers observed
the following:



“For all the benchmarks except cgm, there was very little temporal reuse, and the cache size
that had approximately the same miss ratio as streams is proportional to the data set size”
(Palacharla and Kessler).

As a result of these conclusions, some vendors of high performance computing systems
have opted to equip their systems with fast memory interfaces but with a limited amount of on-chip
cache and no off-chip cache.  Examples of such conclusions are as follows:

(1) Intel Paragon:  16-kB instruction cache, 16-kB data cache.

(2) Cray T3D:  16-kB instruction cache, 16-kB data cache.

(3) Cray T3E:  8-kB primary instruction cache, 8-kB primary data cache, 96-kB combined
instruction/data secondary cache.

(4) IBM SP with the Power 2 Super Chip:  64-kB instruction cache, 128-kB data cache.

Can a way be found to beat these conclusions?  If so, how and why are these techniques not
used more frequently?  The following is a list of techniques that have been used to improve the
cache miss rate for a variety of scientific codes:

(1) Reordering the indices of matrices to improve spatial locality.

(2) Combining matrices to improve spatial locality.

(3) Blocking the code to improve both spatial and temporal locality.

(4) Tiling the matrices to improve spatial locality.

(5) Reordering the operations in a manner that will improve the temporal locality of the
code.

(6) Recognizing that if one is no longer dealing with a vector processor, it may be possible
to eliminate some scratch arrays entirely, while substantially reducing the size of other
arrays.  When done well, this can increase both the spatial and temporal locality by an
order of magnitude.

(7) Writing the code as an out-of-core solver.  In many cases, it would not actually be
necessary to perform input/output (I/O).  However, by restricting the size of the
working arrays, in theory, one could significantly decrease the rate of cache misses that
miss all the way back to main memory.  This method is especially good at improving
the temporal locality.



(8) Borrowing the concept of domain decomposition, which is frequently used as an
approach to parallelizing programs.  While this approach is not without its
consequences, it can significantly decrease the size of the working set (or help to create
one where it would otherwise not exist).  Again, this method is aimed at improving the
temporal locality.

This demonstrates that there are methods for significantly decreasing the cache miss rate.
However, as will be seen later in this paper, some of these techniques work best when dealing with
large caches.  Unfortunately, many of the more popular MPPs  either lacked caches entirely (e.g.,
the NCUBE2 and the CM5 when equipped with vector units) or were equipped with small to
modest sized caches (e.g., the Intel Paragon, Cray T3D and T3E, and the IBM SP with the
POWER2 Super Chip processors).  As a result, for many programmers working on high
performance computers, there was no opportunity to experiment with ways to tune code for large
caches.  Furthermore, since many codes are required to be portable across platforms, there was little
incentive to tune for architectural features that were not uniformly available.

3.  Understanding the Limitations of a Stride-1 Access Pattern

Before continuing, we will briefly discuss spatial and temporal locality.  Let us consider the
case of an R12000-based SGI Origin 2000 with prefetching turned off a 300-MHz processor
generating one load per cycle with a Stride 1 access pattern and no temporal locality (this is an
example of pure spatial locality of reference), with a cache line size of 128 bytes for 64-bit data.
This arrangement will have a 6.25% cache miss rate.  Assuming no other methods of latency hiding
are used and assuming a memory latency of 945 ns (Laudon and Lenoski 1997), then this processor
will spend 95% of its time stalled on cache misses.  Phrasing this another way, if one assumes that
the peak speed of the processor is one multiply-add instruction per cycle, the best that the processor
will deliver is 32 MFLOPS out of a peak of 600 MFLOPS.  This result compares favorably with
the measured performance in Table 1.

Table 1. Single Processor Results From the Streams Benchmark
for Commonly Used HPC Systems a

System
Peak Speed
(MFLOPS)

TRIAD
(MFLOPS)

Cray T3E-900  (Alpha 21164) 900 47.3
Cray T3D  (Alpha 21064) 150 14.7
IBM SP P2SC  (120 MHz) 480 65.6
IBM SP Power 3 SMP High  (222 MHz) 888 51.2
SGI Origin 2000  (R12K - 300 MHz) 600 32.3
SUN HPC 10000  (Ultra SPARC II - 400 MHz) 800 24.7

a (McCalpin 2000)



From this, it can seen that for large problem sizes, relying on spatial locality alone will not
produce an acceptable level of performance.  Instead, one must combine spatial locality with
temporal locality (data reuse at the cache level).  However, if a vector optimized code is run on this
machine with the same assumptions, one can, at best, work on 131,072 values per megabyte of
cache (the R12000 based SGI Origin 2000 is currently being sold with 8-MB secondary caches).
Table 2 demonstrates where some of the strengths and weaknesses of this approach lie.  Clearly the
two most important concepts are:

(1) Maximize the processing of the data a grid point at a time.

(2) Minimize the amount of data that needs to be stored in cache at one time (minimize the
size of the working set).

Assuming that the techniques mentioned in the previous section have improved the cache
miss rate to 1%, then the peak delivered level of performance rises to 157 MFLOPS (or spending
74.9% of the time).  Similar results are obtained when analyzing all CISC- and RISC-based
architectures.  However, only those architectures with large caches lend themselves to some of
these tuning techniques.

4.  Results

When Karen Heavey of ARL, Aberdeen Proving Ground, MD, first attempted to run a 3-
million grid point test case with F3D on an SGI Power Challenge (75-MHz R8000 processor - 300
MFLOPS), a 10 time step run took over 5 hours to complete.  The same run when run on a Cray
C90 takes roughly 10 minutes to complete.  There was never a chance of running it that fast on the
Power Challenge, since the processor is slower.  However, it was hoped that run times of roughly
30 minutes might be achievable.  Table 3 lists the adjusted speed of the RISC optimized code when
run on a variety of platforms.  The speed has been adjusted to remove the startup and termination
costs, which are heavily influenced by factors that are not relevant to this discussion.

Table 4 lists the adjusted speed of the RISC optimized code for a variety of problem sizes
when run on the SGI Origin 2000 (R12000) and the SUN HPC 10000.  Finally, Table 5 lists the
dimensions of the grids used for each of these test cases.

5.  Prefetching and Stream Buffers vs. Large Caches

Now that it has been established that large caches can be of value, let us consider the
relative performance of systems that stressed prefetching and/or a fast low latency memory system
versus those that include a large cache.  Tables 6 and 7 contain some real world examples of codes
that were able to benefit from the presence of a large cache.  This is not to say that all codes will
benefit form the presence of a large cache.  In particular, it is no accident that the version of F3D
that was parallelized using compiler directives was able to take advantage of a large cache.  It was
extensively tuned for such an architecture.  Other codes might perform better on the Cray T3E,
especially if they were never tuned for cache-based systems.



Table 2.  The Size of the Working Set for a 1 Million Grid Point Problem

Problem Description Number of Variables
(Per Grid Point)

Size of the Working Set
(Bytes)

1-D 1
4

30
100

8,000
32,000

240,000
800,000

2-D 1000 H 1000
(Processed as a 1-D problem)

1
4

30
100

8,000
32,000

240,000
800,000

2-D 1000 H 1000
(Processed as 2-D vector optimized
problem, 1 row or column at a time)

1
4

30
100

8
32

240
800

2-D 1000 H 1000
(Processed one grid point at a time for
maximum temporal reuse)

1
4

30
100

8
32

240
800

3-D 100 H 100 H 100
(Processed as a 1-D problem)

1
4

30
100

8,000
32,000

240,000
800,000

3-D 100 H 100 H 100
(Processed as a plane of data at a time as
a 1-D problem)

1
4

30
100

80
320

2,400
8,000

3-D 100 H 100 H 100
(Processed as a 3-D vector optimized
problem, 1 row or column at a time)

1
4

30
100

800
3,200

24,000
80,000

3-D 100 H 100 H 100
(Processed one grid point at a time for
maximum temporal reuse)

1
4

30
100

8
32

240
800

Block of data 32 H 32
(Processed as a block)

1
4

30
100

8,192
32,768

245,760
819,200



Table 3.  The Performance of the RISC Optimized Version of F3D for Single
Processor Runs for the 3-Million Grid Point Test Case

System Name Processor Clock Rate
(MHz)

Peak Speed
(MFLOPS)

Adjusted Speed
(Time Steps/Hour)

Cray C90a Proprietary 238 952 81.
SGI Power Challenge R8000 75 300 23.
SGI Power Challenge R10000 195 390 32.
SGI Challenge R4400 200 100 10.
Convex Exemplar SPP-1600 HP PA 7200 120 240 16.
SGI Origin 2000 R10000 195 390 41.
SGI Origin 2000 R12000 300 600 61.
SUN HPC 10000 Ultra SPARC II 400 800 46.
a Cray C90 ran the vector optimized code.

Table 4. The Performance of the RISC Optimized Version of F3D for Single Processor Runs
on the SGI Origin 2000 and the SUN HPC 10000 for a Range of Test Cases

Test Case Size
(Millions of Grid Points)

Adjusted Speed
(Time Steps/Hour)

Adjusted Speed
(Time Steps/Million Grid Points-

Hour)
SGI SUN SGI SUN

1.00 181. 138. 181. 138.
3.01 61. 46. 184. 138.

12.0 11.7 10.6 140. 127.
35.6 4.0 3.4 142. 121.
59.4 2.3 2.1 137. 125.

124. 1.05 0.93 130. 115.
206. 0.62 NA 128. NA

Note: The SGI Origin was equipped with 128, 300-MHz R12000 processors with 8-MB secondary caches and
2 GB of memory per 2-processor node.

Note: The SUN HPC 10000 was equipped with 64, 400-MHz Ultra SPARC II processors with either 4 or
8 MB of secondary caches (one of our systems was upgraded before the series of runs was finished) and
4 GB of memory per 4-processor node.

Note: There was insufficient memory to run the 206-million grid point test case on the SUN HPC 10000.
Note: See Table 5 for a description of the test cases.



Table 5.  A Summary of the Test Cases

JMAX
Test Case Size

(Millions of Grid Points)

Zone 1 Zone 2 Zone 3
KMAX LMAX

1.00 15 87 89 75 70
3.01 15 87 89 225 70

12.0 15 87 89 450 140
35.6 29 173 175 450 210

59.4 29 173 175 450 350
124. 43 254 266 450 490
206. 71 421 442 450 490

Note: For historical reasons, there were some differences between the 1- and 3-million
grid point test cases.  All of the remaining test cases were based on the 3-million
grid point test case.  Only the 1-million grid point test case has been run out to a
converged solution.  The remaining test cases were only used for scalability
testing.

Table 6. Comparative Performance From Running Two Version of F3D Using 8 Processors
With the 1 Million Grid Point Test Case

System Peak Processor
Speed (MFLOPS)

Parallelization Method Performance
(Time Steps/Hour)

SGI R12K Origin 2000 390 Compiler Directives 793

SUN HPC 10000 800 Compiler Directives 999
HP V-Class 1760 Compiler Directives 1632

SGI R12K Origin 2000a 600 SHMEM 349

Cray T3E-1200a 1200 SHMEM 382

IBM SPa 640 MPI 199
a Results provided courtesy of Marek Behr, formerly of the Army High Performance Computing Research Center

(AHPCRC).



Table 7.  Comparative Performance From Running the Department of Energy (DOE)
Parallel Climate Model (PCM) Using 16 Processors a,b

System Peak Processor Speed
(MFLOPS)

Performance
(MFLOPS/PE)

SGI R10K Origin 2000 500 60
Cray T3E-900 900 38

a This data is based on runs done using the T42L18 test case.
b Bettge et al. 1999.

6.  Prefetching and Stream Buffers in Combination With Large Caches

Previously, this paper pointed out the limitation of relying solely on prefetching and stream
buffers.  However, there is also a problem with relying solely on caches, even large caches, to solve
all of the performance problems.  In particular, there is no reason to believe that as the processor
speed increases, the cache miss rate will automatically decrease.  Even if one were to increase the
sizes of the cache while increasing the speed of the processor, it would seem unlikely that the cache
miss rate would significantly decline.  (As Table 2 demonstrates, the cache miss rate is a function
of the size of the cache and the size of the working set.  Once the working set comfortably fits in
cache, additional increases in the size of the cache will be of minimal value.)  If the memory
latency is kept constant, then the gain in performance from increasing the speed of the processor
will be sublinear.  Table 8 shows an example of this.  This is what is known as the Memory Wall.

Table 8. The Predicted Performance Increase Resulting From Upgrading a 195-MHz
R10000 Processor to a 300-MHz R12000 Processor in an SGI Origin 2000

Percentage of Time Spent on Cache Misses
(R10K)

Speedup
(Percent)

0 54
10 46
25 36
50 21
75 10
90 4

100 0

However, there is nothing that says one cannot combine both caches and some form of
prefetching/stream buffers.  The goal of this would not be to prefetch values far enough in advance
that they would arrive prior to the time needed.  With latencies of over 100 cycles, such a design
would effectively be a vector processor such as the Cray SV1.  We are also not trying to emulate a



vector processor’s ability to stream in a large vector of data while encountering the cost of a single
cache miss.  Instead, the goal is to overlap two or more memory latencies, thereby effectively
decreasing the average latency by a factor of two or more.

Before considering some results, let us quickly review the following potential limitations of
prefetching:

(1) The hardware and/or compilers may not support it.

(2) The compiler support may be limited (this appears to be the case with the SGI
compilers).

(3) With a processor capable of out-of-order execution (e.g., those used by SGI), the
hardware may be capable of overlapping two or more cache misses on its own.  This
makes it difficult to measure an incremental benefit from turning on prefetching.

(4) There may be limitations in the memory system (e.g., bandwidth onto the processor,
main memory bandwidth, or interconnect bandwidth) that will limit the potential
benefits of turning on prefetching.

(5) No system supports an unlimited number of outstanding prefetches and/or cache
misses.

(6) The smaller the cache miss rate, the harder it will be for either the compiler or the
hardware to expose opportunities for prefetching.  In other words, inefficient codes will
benefit the most, but they will still be inefficient.

Table 9 discusses the benefits of using prefetching on the SUN HPC 10000 and on the HP
V-Class system with the PA-8500 processor.  This is particularly relevant, since currently, the HP
system uses one of the fastest microprocessors in production (peak speed is rated at
1760 MFLOPS/processor).  As can be seen, there was little or no benefit from using prefetching on
the SUN system.  A few subroutines ran slightly faster, while others ran slightly slower; but the
effect was not judged to be large enough to compile the two groups of subroutines separately.
However, on the HP system, the benefit was very significant.

Table 9. The Effect of Turning Prefetching on When Running F3D With the 1-Million Grid
Point Test Case on the SUN HPC 10000 and the HP V-Class Systems

System Name Peak Speed
(MFLOPS)

Adjusted Speed
No Prefetching

(Time Steps/Hr)
Prefetching

Speedup
(%)

SUN HPC 10000 800 138 119 !14

HP V-Class 1760 150 212 41



7.  Conclusions

It is possible to tune some scientific codes to take good advantage of systems with a
memory hierarchy.  It appears as though two- and three-dimensional problems have an inherent
advantage to one-dimensional problems.  Also, algorithms that do a lot of work per time step (e.g.,
implicit CFD codes) but exhibit a rapid rate of convergence may be better suited for use with
caches than algorithms that do very little work per time step but require a large number of time
steps to generate an answer (e.g., explicit CFD codes).  In any case, one should be prepared to
spend a significant amount of time and effort retuning the code.

On a side note, a surprising outcome of this work is that BLAS 1, and, to a lesser extent,
BLAS 2, subroutines should be avoided when working with systems that use cache.  The BLAS 1
subroutines have little or no ability to optimize for either spatial or temporal locality if it does not
already exist.  The BLAS 2 subroutines can generate spatial locality through the use of blocking but
are inherently unlikely to support temporal locality since they operate on planes of data.  Similarly,
it was shown that other programming styles that were commonly used with vector processors are
distinctly suboptimal for the newer systems.  Therefore, while some researchers have expressed a
strong desire to maintain a single code for use with both RISC- and vector-based systems, it
appears as though this is not a good idea.

To the increasing extent when designing or buying a computer for high performance
computing, the correct choice when faced with the choice of large cache or prefetching/stream
buffers will be both.  Of course, this assumes that the rest of the system is compatible with that
choice.
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Glossary

AHPCRC - Army High Performance Computing Research Center

ARL - U.S. Army Research Laboratory

BLAS - Basic linear algebra subroutines

CFD - Computational fluid dynamics

CHSSI - Common High Performance Computing Software Support Initiative



CISC - Complicated instruction set computer
DOD - Department of Defense

DOE - Department of Energy

HPCM - High performance computing modernization

MFLOPS - Million floating point operations per second

MPP - Massively parallel processor

RISC -  Reduced instruction set computer
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